

The information in this publication provides a condensed overview of facts and figures about our Nation's highways. It is considered to be of interest to the average citizen. Except where noted, the Federal Highway Administration is the source of the data provided by the States. Unless otherwise stated, we have used 1996 data. For more detailed data on many of the subjects covered, refer to the publication series, Highway Statistics, published annually by the Office of Highway Information Management, Fed. cral Highway Administration.

Data for this booklet, the Highway Statistics series, and many other publications may also be viewed and downloaded at our website:
htp. $/ / w w w . f h w a . d o t g o w / o h i m$
ontents
Our Nation's Highways
The highway system is vital to the Nation's economy. Ninety-three percent of total dollars of freight was transported over our highways in 1993.

10 Air Quality

Most of the reduction in atmospheric concentrations of carbor mononide, volatile organic compound, and nitrogen oxde emissions con be attributed to reduced emissions by motor vehicles.

12 The Vehicle Fleet The cost-per-mile for operating an intermediate-size vehicle in 1996 was 44.3 cents.

Of the 180 million licensed drivers in the United States in 1996, the largest mumber of drivers falls in the age group of $35-39$ year-olds (11.7 percert).

The Highway System
The United States has 3.9 million miles of roadway, of which 3.1 million miles are rural roads. The Interstate System accounts for only 1.2 percent of total mileage but carries 23.6 percent of total travel.
22. National Highway System

The National Highway System consists of over 158,000 miles which inchudes the Interstate System and portions of other functional systems.

23 Conditions Performance and Safety
The fatality rate on the Interstate System has consistently dropped since 1970 and was at an all-time low in 1996.
29. Motor-Fuel Use

In 1996, 147 billion gallons of fuel were consuned for highway use, averaging about 711 gallons per motor vehicle or 16.9 miles per gallon.
31 Travel
American's motor vehicle travel in 1996 reached 2.5 trillion vehicle-miles, an average of 11,807 miles per vehicle per year. Automobiles are responsible for 59.1 percent of this travel.
36. Financing Our Highways

Although expenditures for highways now exceed $\$ 98$ billion a year, this amoumts to less than 3.9 cents per vehicle-mile traveled.

48
 Selected Statistics by State

50 Publication Listing
51. Glossary of Acronyms

52 Notes

SOURCE: U.S. Bureau of Labor Statistics, Consumer
After housing (33.5 percent), transporation household expenditure, and 62 percent of tran are for personal vehicles, gas, and oil.

The personal motor vebicle (antomobile, light truck, van, and motorcycle) is the predoninant form of personal transportation. Privately owned vehicles are used for 90.8 percent of all personal travel. When school bus (1.3%), bus/streetcar (1.4%), and taxi (09%) are added to the Private Vehicle portion, we find that almost 94 percent of personal transportation is served by highways.

The Nation's highway system carried 25 percent of the total revenue ton-miles of freight in 1995, compared to 19 percent in 1960. More significant is that almost ainety-three percent of the total dollars of freight in 1993 was transported across these same highways. The amount of total revenue ton-miles of freight carried across highways has increased from 285 billion in 1969 to 921 billion in 1995-a 223 percent increase.

NOTE: The survey excludes establishments classified in the Standard Industrial Classification as farms. forestry, fisheries, oil and gas extraction, govemments, construction, transportation, households, and some retail and service businesses
SOURCE: Transportation - Commodity Flow Survey 1983, Bureau of Transportation Statistics.
4

Road and street mileage only increased 2.0 percent since 1976 , but the number of vehicles using those roads and streets has increased 51.7 percent and vehicle-miles of travel increased by 77.0 percent. Highway capital outlay expressed in constant 1987 dollars has only increased by 56.4 percent while the pereent change from 1976 to 1996 for gallons of motor fuel per mile has decreased by 35.1 percent.

NOTE: On August 5, 1907, the President signed the Taxpayer Relief Act (PL. 105-34), which dedicates an additional 4.3 cents of motorfuel taves to the Highwy Trust Fund, providing 3.45 cents to the Hightay Account. The 1995 data indicates that State tax rates were vitually unchanged and did not keep pace with inflation.

Despite increases in State motor-fuel tax rates during the 1980 's, the weighted average gasoline tax rate expressed in constant 1970 cents decreased by 34 percent from 7.02 cents per gallon in 1970 to 4.62 cents per gallon in 1996. Over the same 1970 to 1996 period, the Federal gasoline tax rate expressed in constant 1970 cents increased by 13 percent, from 4.00 cenis per gallon to 4.53 cents per gallon as the rate increased from 4.00 cents per gallon to 18.3 cents per gallon. The Federal tan on gasoline included 6.8 cents for deficit reduction and 0.1 cent for the Leaking Underground Storage Tank (LUST) Trust Fund. In October 1995, the amonnt for deficit reduction decreased to 4.3 cents per gallon. In lanuary 1996, the LUST Trust Fund tax expived and the Federal tax rate dropped to 18.3 cents. In October 1997, the LUST Trust Fund tax was restored and 18.3 cents was directed entirely to transportation purposes. State tax rates for 1996 were virually unchanged.

In 1996, highway capital expenditures were 1.87 cents per vehicle-mile of travel (VMT) as compared to 1.04 cents per VMT in 1970 - an 80 percent increase. After accounting for inflation, however, 1996 capital expenditures were only 0.54 cents per VMT, a 48 percent decrease from 1970's capital expenditures. In 1996, total highway expenditures were 3.95 cents per VMT as compared to 1.88 cents per VMT in 1970 -a 110 percent increase. After adjusting for inflation, total 1996 highway expenditures were only 1.06 cents per VMT, a 44 -percent decrease from 1970's total highway expenditures. In effect, 1996's highway expenditures by all units of government, with inflation removed, were about 56 percent of what they were 26 years ago for each vehicle-mile of travel.

There is a strong relationship between the Nation's economy and travel on the Nation's highway system. Since the 1960 s, growth in the Gross Domestic Product (GDP) and vehicle-miles of travel (VMT) reflect strikingly similar pattems, including the period of energy disruptions during the 1970 s.

Average private vehicle occupancy is 1.59 person miles of travel per vehicle-mile. As expected, the highest occupancy rates are for social and recreational activities and the lowest rates are for travel to and from work. The survey participants listed their most common reasons for not carpooling to work: no one to carpool with, working irregular or unusual hours, needing their own car before, during, or after work.

The 1995 Nationwide Personal Transportation Survey (NPTS) data show a continuation of the increase in commute trip length without a corresponding increase in travel time. While commuting trips are 37 percent longer in miles since 1983, travel time increased only by 14 percent. The three reasons most often cited for this simation are the continued decentralization of metropolitan areas, expansion of the peak travel period, and the shift from transit and carpool to single-occupant vehicles. All three factors would contribute to commuters being able to travel longer distances and make those trips at a greater speed than in the past.

Annoan Vehide-Nitles of Travel per Capia(Autownobles) Numbar of Automotiles per Capita

Americans own more vehicles and travel far more than the citizens of other countries. Only in the U.S. and Canada is the automobile ownership per capita over 50 percent, with Germany, France, and Sweden close behind at over 40 percent. Annuai vehicle-miles for automobiles follow a more prononnced pattern with per capita mileage for the U.S. exceeding 5,800 and for Canada exceeding 4,800. Sweden, Germany, the U.K., and France follow each with between 3,000 and 4,000 per capita miles.

Land area, population and the resulting population density, as well the prosperity of the countries as shown in the gross domestic product (GDP), provide a frame of reference and an explanation for various transportation indicators. The highest vehicle-miles per capita is associated with the large land axeas, high GDP, and low gasoline prices of the U.S. and Canada. The amount of roadway per land area is highest for small, populous and prosperous Japan; but gasoline prices are high and vehicle-miles traveled per capita are moderate there. Mexico's low GDP overrides all other factors to create a less developed transportation infrastructure and less travel, but, unfortunately, a very high catality rate.

SOURCE: Environmental Protection Agency's "National Alr Polutant Emission Trends, 1990-1995," Office of Air Qually Plaming and Standards, Research Thangle Park, NC, October 1996, Publication No. 454/R-96-007, Tables A-1, A-2, and A-3.

Most of the reduction in emissions can be attributed to reduction from motor vehicles. Emissions controls for cars and trucks have significantiy reduced their emissions of CO and volatile organic compounds (VOC, a primary ingredient of ozone) since 1970 even though travel more than doubled over the past 25 years. Emissions of these pollutants from other sources have fallen only slightly. At the same time, notor vehicle NOx emissionswhich contribute to ozone have held at about 1970 levels, while those from all other sources have increased slightly.

SOURCE: Tabulated from Environmental Protection Agency's Aerometric Infornation Retrieval database. Violation readings for ozone and carbon monoxide include only those recorded at monitors reporing throughout the 20 -year period covered by the figure.

Residents of the Nation's urban area are breathing easier these days. Atmospheric levels of ozone and carbon monoxide (CO) have declined consistently for two decades. Violations of the National Standards for Carbon Monoxide have been virtually eliminated. Controlling ground-fevel ozone (or "smog") has proven more challenging, but violations of the Federal 1 -hour ozone standard have also been sharply reduced.

The number of tegistered motor vehicles contrubs to increase steadily. However, aptonobile registrations have decreased shighty (-0.2 percent or 0.3 million vehicies) since 1986 while truck registrations have increased significantly (68.3 percent of 30.8 milion vehicles). Light single-mit trucks have seen a phenomenal growth in popularity and now accourt for 32.9 percent of total registered motor vehicles. In addition, prior to 1985 , automobile registrations included personal passenger vans, passenger minivans, and utility-type vebicles. However, begiming with the 1985 data, these vehicles are included with truck registrations. Reference Highwey Statistics Sumany to 1995 for corrections or revisions made to previous published data.

*Mean age - The sum of the products of units mutiplied by age; divided by the fotal units (units in years). SOURCE: American Automobile Manufachurers Assodation, AAMA Motor-Vehicle Facts and Flgures 1997 (complied from R.L. Folk anc Co, data).

The trend of keewing cars and trucks for longer periods of time has gradually increased since 1988. The average age of a passenger car in use in 1996 was 8.6 years compared to 6.6 in 1980. The same trend holds true with truck use-the average age of a truck in 1996 was 8.3 years compared to 7.1 in 1980

Cast of Ownimg and Operating Antomoblies, Wans-sind Kght Trucks-1996			
20 \% \%			
	3kere	(2)S\%	chathorither
	Subcompact	32.0	4 cylinder Avg MPG-33
	Compact	35.8	4 cylinder Avg MPG-28
	Intermediate	44.3	6 cylinder Avg MPC-20
/	Full-size Vehicle	46.3	6 cylinder Avg MPG-19
	Compact Pickup	31.3	4 cylinder Avg MPG-19
	Full-size Pickup	38.9	8 cyllnder Avg MPG-13
	Compact Utily	40.7	4 cylinder Avg MPG-22.5
(2)	Full-size Utily	45.4	8 cylinder Avg MPG-12.8
	Minivan	40.0	6 cylinder Avg MPG-18.5
,	Fullsize Van	48.9	6 cylinder Avg MPG-12.4

1 moludes cepreciation, financing, insurance, registration fees, taxes, fuel maintenance, and repairs ${ }^{2}$ Total cosis over 5 years, besed on 70,000 mibes.
${ }^{3}$ Average MPG reflects city, exciuding highowa.
SOURCE: Fedaral Highway Administation estimates based on the 1996 editions of The Complete Small Truck Gude and The Complete Car Cost Guide, from IntelliChoice, Inc., and sales figues from Aufomotive News.

After a slight drop in 1991, total motor-vehicle retail sales are steadily increasing --15,457,000 units for 1996 . The all-time high was set in $1986-16,322,000$ units. We are still seeing a decline in retail sales of automobiles- 55 percent of total sales in 1996 comyared to 76 percent in 1976 . Popularity of the light trucks as personal vehicles continues to increase retail sales of trueks for $1996(6,930,000$ uits $)$.

SOURCE: Federal fighway Administration estimates based on the 1996 editions of The Complete Small Truck Guide and The Complete Car Cost Guide, from Intellohoice, Inc., and sales figuses from Automotwe Nows.

The Federal Highway Administration estimates that combined Federal and State motor-fuel taxes currently account for only 3.2 percent of the cost per mile of owning and operating an automobile compared to 4.2 percent in 1994 and 5.1 percent in 1991 .

There were $179,539,340$ hicensed drivers in the United States in 1996 . That is an increase of 34 percent since 1976 and a 14 -percent increase over 1986. As the average age of the licensed driver shifts upward, we see that 35-39 year-olds conain the largest share of drivers. There are slighty fewer young drivers--ander 20 -in $1990(9,249,000$) compared to 1996 ($9,234,000)$.

The number of age 70 and over drivers holding a valid license has conthued so increase7.2 million in 1976 compared to 17.1 million in 1996.

While the number of female drivers increased 45 percent since 1976 , the number of male drivers only increased 25 percent.

In 1996, 88 percent of the driving age population was licensed to drive a motor vehicle. Compared to 1950 , which was 57 percent, this is an increase of 117 million drivers on our highways in the past 36 years. In 1975, the number of registered vehicles surpassed the number of licensed drivers--that tread has contmued to this day. In fact, registered vehicles have now surpassed the driving age population by $2,578.000$ vehicles.

Despite significant increases in women's driving, men still average 6,428 miles more per year than women. The disparity is closing for younger drivers, and it is expected that this gap will close considerably in the future.

Roads and streets are grouped into functional systems according to the type of service they provide. The arterial system (incleding the Interstate System) accounts for about 11.1 percent of the Nation's total road and street mileage but carries 72.4 percent of total travel.

The Interstate System accounts for only 1.2 percent of the Nation's total miles of roadway; however, 23.6 percent of total travel occurs on this system. Conversely, local functional system roads account for 68.8 percent of the Nation's total road and street mileage but serves only 12.7 percent of total travel.

Functional Classification

1 Interstate System -.. The Interstate System consists of all presently designated freeway routes meeting the Interstate geometric and construction standards for future traffic, except for porions in Alaska and Puerto Rico. The Interstate System is the highest classification of arterial roads and streets and provides the highest level of mobility, at the highest speed, for a long uninterrupted distance.

2 Other Arteriak - These consist of limited-access freeways, mult-lane highways, and other important highways supplementing the interstate System that comect, as directly as practicable, the Nation's principal urbanized areas, cities, and industrial centers; serve the national defease; and connect at suitable border points with routes of continental importance.

3 Collectors - The collectors provide both land access service and traffic circulation within residential neighborhoods, commercial and industrial areas, and downtown city centers. Collectors connect local roads and streets with arterials and provide less mobility than arterials at lower speeds and for a shorter distance.

4 Locals -..The local roads and streets provide a high level of access to abuting land but limited mobility.

Tunisdictoral Contrel af US. Roads and Streets

mytsibilen	[017 mesye	Prasul	mpent Mexro	Ecicim	Tor Nillerg	Retsm
State	693,144	22.4	113,499	13.6	806,340	20.5
Local	2,238,308	72.2	718,950	86.2	2,957,258	75.2
Federal	168,913	5.4	1,474	0.2	170,387	4.3
Total	3,100,362	100.0	833,623	100.0	3,933,985	100.0

The vast majonty (75.2 percent) of the Nation's roadways are under the jurisdiction of local govermments (town, city, county). Only 4.3 percent are under the jurisdiction of the Federal Government which includes roads in national forests and parks and on military and Indian reservations. The rest of the roadways (representing 20.5 percent of the total 3,933,985 miles and including the entie Interstate System) are controlted and maintained by the State governments.

Currently, about 60.5 percent of all roxds and streets are paved, compared with about 30.4 percat in 1956. The total paved mileage has increased 140 percent since 1956 , but the total road and street mileage has increased by only 18 percent. Nearly all of the unpaved mileage is on lightly travelled rural roads.

brachom 	2151	6 shand 1231945	yroen	8k	4841	54 ©hinh 406505	4 5 on eno The 90
Interstate	32,920	0.2\%	13,366	19.5\%	46.286	5.1\%	1.2\%
Other Freeways Expressways	t	--	9.070	23.3\%	9,070	23.3\%	0.2\%
Other Fincipal Arterial	08,232	17.2\%	53,220	5.2\%	151,452	14.8\%	3.8\%
Minor Arterial	137,652	-7.0\%	89,523	19.6\%	227.175	20\%	5.8\%
Major Collector	432,890	-0.1\%	--	---	432,890	-0.1\%	11.0\%
Minor Collector	273,876	-7.5\%	-"-	\cdots	273,876	-7.5\%	7.0\%
Collector	-	-	88,509	17.4\%	88,509	17.4\%	2, 2\%
Local	2,124,792	-3.0\%	579,935	19.3\%	2,704,727	1.0\%	68.8\%
Total	3,100,362	-2.6%	833,623	18.1\%	3,933,985	1.2\%	100.9\%

Roads and streets are grouped into functional systems according to the type of service they provide, and to some extent, on how much traffic the facility carries. Although functional classification may change over time to better describe the changing role that a paxticular road or street may be playing, the total mileage changes only slightly over time. Except for the other principal arterial system, the rural systems actually decreased in mileage due to the expansion of urban boundaries and functional reclassification.

Trunctoul 8.3414	ters	4t shane 	Unesi	7x 2 $5: 14$ 14254103	Tist	646 (11 5 seys med	24sct et 2 illwat
interstate	233,593	46.5\%	355,196	63.1\%	588,789	50,4\%	23.6\%
Oher Freeways/ Expressways	--	--	158,233	50.0\%	158,233	50.0\%	6.3\%
Other Principal Aterial	221,730	48.4\%	380,320	32.2\%	002,050	37.7\%	24.1\%
Minor Aterial	158,245	12.5\%	300,658	44.0\%	458,903	31.3\%	18.4\%
Major Collector	191,854	10.3\%	-	--	191,654	16.3\%	7.7\%
Minor Collector	50,577	17.3\%	"*'	--	50,577	17.3\%	2.0\%
Collector	- -	-	129.972	44.5\%	129,972	44.5\%	6.2\%
Local	108,156	19.9\%	209,567	28.4\%	317,723	25.6\%	12.7\%
Total	1963,955	28.9\%	1,533,946	4.1.	2,497,901	36.1\%	100.0\%

Total mileage has increased only 1.1 percent since 1986 , while travel has increased 36.1 percent during the same time period. The uban travel increase of 41.1 percent has outpaced the rural 28.9 percent increase due to the Nation's continued growth in urbanization and expanded urban boundaries, which involves the transier of heavily travelled nual facilities to urban. The urban Interstate system has had the greatest travel growth (53.1 percent) during the 1986 to 1996 time period.

The National Highway System (NHS) is the network of nationally significant highways approved by Congress as required by the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. It includes the Interstate System and over 100,000 miles of arterial and other roads. Designation of the Interstate System was completed on November 28, 1995, when President Clinton signed the National Highway System Designation Act of 1995 (Public Law 104-59).
The NHS represents only about 4% of the Nation's total public road mileage and 6% of its lane miles, but carries over 43% of the travel. Approximately 79% of the Combination Truck Travel is on the NHS (as represented by the entire Principal Arterial System).
Although there is about three times as much NHS mileage in rural areas than there is in urban, the NHS percentages of the total U.S. mileage in rural and urban areas, respectively, are similar.

A majority of the travel on the NHS takes place in urban areas even though more mileage exists in the rural areas.

* Estimated. The High-Piority Coridors category contains some mileage also foud in other categories.

Of the 158,878 NHS miles, 29 percent is made up of the Interstate System (IS). The NHS encompasses all of the Strategic Fighway Network (STRAHNET) (about one fourth of which is on the IS), and other highways. As shown on the following page, 2,032 miles of intermodal comnectors have been NHS designated.

Trane $\frac{\text { Lanes and Access Controt for the NeS }}{}$ (Rual and Uban Mies)				
G36\%OY	mersinc	© ${ }^{\text {cher }}$	treimis	Goteg 0
<-3 lanes (includes 1 -way streets)	1,080	69,684	70,764	44.5
$>=4$ lanes (undivided)	770	9,4,19	10,189	6.4
$>=4$ lanes (divided-no access control)	34	15,027	15,061	9.5
$>=4$ lanes (divided-partial access contro)	140	8,277	8,417	5.3
$>=4$ lanes (divided-full access control)	44,262	10,185	54,447	34.3
Total	46,286	112,592	158,878	100.0

[^0]

mbermodal Welity Commectoms
 (Appoved and Proposed)

Kaxdyw kirs	Whingoxok kimys	ky octs dedmet
Aiport	228	401
Interciy Bus	99	63
Fery	59	293
Truck/Pipeline	61	112
Multipurpose	43	35
Port	247	378
Truckinail	211	336
Amtrak	71	80
Public Transit	388	334
TOTALS	1,407	2,032

As defined by ISTEA, the NHS includes highways that provide connections to major intermodal terminals. Section 101 of the National Highway System Designation Act of 1995 required the Secretary of Transportation to submit NHS connections to "...major ports, airports, international border crossings, pubhic transportation facilities, interstate bus terminals, and rail and other intermodal transpotiation facilities."

Public transit facilities have the most NHS connections with high associated mileage while airpont facilites have a substantially fewer number of connections but have the most associated milcage.

The FHWA estimates that the NHS contains the following number of bridges, railroad crossings, major border crossings with Canada and Mexico, and full access control mileage.

The preservation of the Nation's highways is a priority at all levels of government. Although pavement condtions and trends vary significantly among the States, average conditions on the Nation's arterial systems appear to bave stabilized, or perhaps even improved, in recent years. This has diminished a contimuous downward trend in physical condition that was evident in the 1970 s and early $1980^{\circ} \mathrm{s}$. This is due primarily to increased attention and fiseal resources assigned to the preservation of pavement during the mid to late 1980^{\prime} 's.

The International Roughress Index (IRI), an objective instrument-based rating system, has been used as an indicator of pavement surface condition and therefore rideability. Pavements with IRIK170 are considered to have an acceptable ride quality, while those with an IRI 95 are considered to have a good or very good ride quality.

Pridge Condinions (as of December 31, 1996)								
	412 24		bute zotcret 		yron Shteret Ast11 $14 y 38$		1.1xt $2 \ln 14 x=$	
		2xad	5kinjux					
Siructuraly Deficient	9,690	7.6	22,597	13.2	69,231	24.4	101,518	17.4
Functionally Obsolete	23,230	18.2	24,025	14.1	33,953	12.0	81,208	14.0
All Other Eridges	94,810	74.2	124,334	727	179,987	63.6	399,137	68.6
Total Bridges in Inventory	127,736	100.0	170,956	100.0	283,171	1000	581,863	100.0
1 ficiudes all Interstate and other principal arterials. ${ }^{2}$ Includes all other highways except minor collectors and local roads and streets. ${ }^{3}$ Includes rural minor collectors and focal roads and streets.								
SOURCE: Federal Highway Admuistration, Office of Engineering, Natonal aridge Inventory Data,								

Thirty-one percent of the Nation's estimated 581,863 bridges are structurally deficient or functionally obsolete. Twenty-six percent of the 127,736 bridges on the NHS (Interstate and all other principal atterials) are structurally deficient or functionally obsolete.

A structurally deficient bridge is closex or restricted to light vehicles only because of deteriorated structural components. Structurally deficient bridges are not necessarily unsafe. Strict observance of signs imiting traffic or speed on bridges will generally provide adeçuate safeguards for those using the bridges.
A functionally obsolete bridge is one that cannot sately service the volume or type of traffic using it. These bridges are not unsafe for all vehicles, but have older design features that prevent them from accommodating current traffic volumes and modero vehicle sizes and weights.

Travel Congation or the Urban Interstate System and Crban NHIS

Urban NHS

Travel congestion on the urban Interstate System and urban NHS appears to have stabilized at a level of about 54 percent and 45 percent, respectively. The trend for the periods shown reflect the updated HPMS capacity calculation procedures. The measure of congestion used in this analysis is called the Volume/Service Flow (V/SF) Ratio. As this ratio gets larger, traffic slows and eventually stops as the theoretical value of 1.00 is approached (the volume of traffic $=$ service flow capability of the facility). A V/SF ratio of greater than or equal to 0.80 was used here to indicate congestion.

Overall, fatalities decreased from 1976 to a low of 39,230 in 1992. However, over the past 4 years the number of fatalities has risen slightly.
Of the 41,9071996 fatalities, 5,231 (or 12.5 percent) occurred on the interstate System. An estimated 40.9 percent of highway fatalities in 1996 were alcohol-related.

SOURCE: National Kighway Trafic Safety Administration, Fatality Anolysis Raportmy Sysem
The fatality rate -- fatalities per 100 million vehicle-miles of travel (VMT) -- on all highway systems continues to decline. In 1996 , the fatality xate reached 1.69 , a 48 -percent decrease from 1976. The decrease in the fatality rate occurred despite a 77 -percent increase in highway travel and a 48 -percent increase in motor-vehicle registrations during the 1976 to 1996 time period. The fatality rate (0.90) on the Interstate System is about one-half the rate on all highway systems.

In 1996, 59 percent of motor-vehicle deaths occurred in places classified as xural. In urban areas, nearly one-third of the victims were nonoccupants; in rural areas, the victims were mostly occupants of motor vehicles. Fifty-one perceat of all deaths occurred in nighttime crashes.

There were 5,126 fatalitics in crashes involving medium and heavy trucks in 1996. Occupants in other vehicles accounted for 4,072 or 79 percent of the fatalities involving nedium and heavy trucks.

There were 453 less fatalities involving medium and heavy trucks from 1986 to 1996 . Occupants in other vehicles showed a decrease of 16 of the fatalities involving medium and heavy trucks while the non-occupant fatalities decreased by 132 over that same period of time.

From 1970 to 1996 , highway fuel consumption increased 59 percent to 146.7 billion gallons. The highway use of motor fuel, which includes gasohol, is predominately by automobiles while the highway use of diesel fuel is predominately by trucks.

During this period, the highway use of motor fuel increased 39.6 percent from 85.6 to 119.5 billion gallons. As population and the number of automobiles increased, the highway use of motor fuel increased overall through the 1980's and into the 1990's despite improved automotive fuel economy.

Gasohol was originally defined to be a blend of 90 percent gasoline and 10 percent fuel alcohol. This definition was expanded in 1993 to include blends varying from 5.7 to 10 percent alcohol. The lower-alcohol blends are often used as "clean an fuel" to reduce carbon monoxide emissions.

Vehiclo- Nies of Trave, Highway Motow Fuel Use \& Nile Per Gallon ol Fuel for All Vehicles

Indices for vehicle-miles of travel, highway fuel use, and average vehicle fuel econony (niles per gallon) have increased significantly through the last decade. Average fuel economy for all vehicles has increased from 12.0 miles per gallon (mpg) in 1970 to 16.9 in 1996, at 41 percent increase. This improved fuel efficiency made it possible to have a 124 percent increase in vebicle-miles of travel with only a 59 percent increase in fuel use.

Annual travel on the Nation's highways reached an estimated 2.5 trillion vehicle-miles in 1996, or about three times the level in 1960. Travel grew about 47 percent during the 1960's, another 38 percent in the 1970's, and another 37 percent in the 1980 's.

Annual travel on roads and streets in urban areas accounted for 1.5 trillion vehicle-miles in 1996 or 61 percent of total travel compared to 44 percent in 1960 . Compared to the urban travel growth of 45 percent in the 1980 's, nural travel grew 27 percent. Much of the wran travel growth can be atributed to expanding urban boundaries.

Travel by all motor vehicles has increased by 124 percent compared to 1970. Truck travel has increased 194 percent since 1970. This includes travel by combination trucks and singleunit tracks. Combination truck travel is up over 238 percent and now accounts for 4.8 percent of total annal vehicle-miles of travel versus 3.2 percent in 1970. The most dramatic increase in travel bas been by other 2 -axle, 4 -tre vehicles with an increase of 561 percent since 1970. This rapid increase is due to the popularity of minivans, pickups and sporthulity vehicles. The percentage of annal travel by passenger cars in relation to travel by all vehicles has decreased from 82.6 percent in 1970 to 59.1 percent in 1996.

On rural Interstate routes in 1996, combination trucks with 5 or more axles accounted for 17 percent of average daily traffic but 91 percent of equivalent axk loads. All oher vehicles accounted for 83 percent of average daily traffic but only 9 percent of traffic loads. From 1986 to 1996 , traffic on rural Interstate routes incteased by 47 percen and equivalent axlo loads sacreased by 55 percent.

The 1995 NPTS data provides information on the reasons for travel. Family and personal business, which includes shopping and services such as haircuts, car repair and banking, account for 46 percent of all person trips and about 35 percent of person miles. Social and recreational trips, which include visiting friends and relatives, attending movies and partics, and participating in sponts, comprise 25 percent of all trips and account for 31 percent of all miles. Trips to work and for work-related purposes, such as attending a meeting, constitute 20 percent of person trips and 28 percent of person miles. The average person trip length, encompassing all trip purposes is 9.1 miles, and the average commute to work is 1.6 miles.

The data from the 1995 NPTS shows that there are approximately 56 million daily walk trips in the U.S. Shopping and other family and personal business trips, which are usually the shortest trips, account for just over 43 percent of all walk trips. Visiting and other social and recreational activities share another 34 percent, and the remainder are for going to school, church or work.
The majority of bike trips, 60 percent, are for a combination of visiting friends and relatives and other social and recreational activities. Another 12 percent are for shopping and 11 percent for other family and personal business. Only 8 percent are for travel to and from work, which is not surprising given increasing work trip lengths and weather considerations.

Thavel for Mork							
Worky p bength by Mode Average Lengthin Mies				Worrunp Emgih cy Hads Average the in Hinutes			
	Male	Eraste	A1.		Whe	Fremale	All
PoV	13.49	9.58	1184	POV	22.09	17.40	20.10
Public Transportation	14.10	11.47	12.88	Public Transportation	43.41	40.38	41.95
Walk	0.81	0.66	0.74	Walk	10.86	10.87	10.86
All Modes	13.28		11.60	All Modes	22.44	18.22	20.65
SOURCE: Federal Highway Administration, 1995 Nationwide Personal Transportation Survey.							

Although work travel is not the most prevalent travel in our very mobile society, and over the years its share of travel has decreased slightly, its impact on the economy is very important and its predictable concentrations at certain times of the day are important. More than 90 percent of work trips take place in privately owned vehicles (POVs) (increasingly ihis is in single-occupant vehicles instead of car pooling and transit). Somewhat more than 3 percent take place on transit and awother 2 percent are walk trips. They average 12 miles in POVs and 13 miles on transit; walk trips average less than a mile. The preference for the poV is clearly linked to the travel times for these modes. While the average travel time for the POV is 20.1 minutes at an average speed of 35 mph , that for public transit is 420 (average speed of 18 mph). The overall average travel time is 20.7 minutes with an average speed of 33.7 mph .

SOURCE: Federal Highway Administration, 1095 Nabionwide Personal Transpontation Sunvey.
There is a general perception that most trips during the traditional "rush hour" are for work. Data from the 1995 NPTS show that the share of trips for work does not support this percepfion. Only 36 percent of all trips starting between 6 AM and 9 AM are for work, and this share drops to 20 percent in the $4 \mathrm{PM}-7 \mathrm{PM}$ time period.

Note that the NPTS defines a trip as travel from one address to another. Those incidental trips we make on the way to work are classified as their own purposes.

Most receipts from the Federal taxation of motor fuel, along with a number of other high-way-related taxes are deposited in the Federal Highway Trusi Fund. The Trust Fund is made up of two accounts- highway and mass transit-and is dedicated for the funding of Federal surface transpotation programs. ha this way, taxes on highway users are used to fund highway facilities. The Trust Fund has provided a stable funding source for highway programs since it was established in 1956.

Motor-fuel tax receipts uccounted for $\$ 21.500$ bilion in Fiscal Year (FY) 1996 or 87.2 percent of all Trust Fund tax receipts. Other taxes accounted for $\$ 3.151$ billion. The balance in the Trust Fund earned interest income of $\$ 1.323$ billion.

NOTE: The Highway Trust Fund was established duly 1,1956 ; he Mass Transit Accoun was estabished Apria : 1982

The balance in the Highway Trust Fund has grown from $\$ 9.581$ billion at the end of FY 1983 to $\$ 21.642$ billion at the end of FY 1996. At the end of FY 1996, the Highway Account held a balance of $\$ 12.118$ billion and had anpaid commitments of $\$ 42.452$ billion. Funds for highway projects are committed when the project is initiated and are paid out as the project progresses. Because construction projects are long tem in nature, the highway-user tax revemues can be committed to projects in advance of actual tax collection.

Tederal-Aid Hegkway Ohligations by Type of Momovernent 19968996

Obligations of Federal aid highway funds totaled $\$ 129.0$ billion for the 7 -year period 1990 through 1996-an average of $\$ 18.4$ billion per year. Reconstuction work represents the largest portion of obligations during the period.

Total highway funding by all units of government reached $\$ 101.5$ billion in 1996-a 218 -percent increase compared to 1976. At 62.9 percent, highway-user fees make up the largest share of revenues used to fund highways. When compared to the 65.2 percent in 1976, the present shares has slightly decreased. The General Fund share of highway funding has decreased from 15.2 percent in 1976 to 12.6 percent in 1996 . Other taxes, investment income and bond proceeds account for 24.5 percent of the total highway funding as compared to 19.6 percent in 1976.

Capital expenditures currently account for 47.4 percent of highway expenditures compared to 47.5 percent in 1976 ; maintenance accounts for 26.3 percent compared to 26.4 percent in 1976. Expenditures for administration, highway patrol, and bond interest also account for an increasing share of total expenditures- -21.7 percent in 1996 versus 20.7 percent in 1976.

NOTE: Expendiures by the Federal Government oniy reflect direct expenditures by Federal agencies. Federai fransfers are included with amounts shown for State and local governments.

State governments account for the largest shares of highway funding and highway expenditures, but the shares atnibuted to local units of government have increased significantly since 1976. Local governments now accomnt for 26.4 percent of total highway funding and 37.6 percent of total highway expenditures compared to 20.9 percent and 35.4 percent, respectively, in 1976. Highway funding by the Federal Govermment has increased 154.3 percent compared to 1976 ; however, the relative share of Federal funding to total highway funding has decreased from 28.6 percent in 1976 to 22.9 percent in 1996.

Heghway Capital Gxpenditures and Maintenance Expenditures
by All Unts of Govermment'

Capital Expendares melode constrwaion, enginering and righ-oi-way
Highway capital expenditures increased 302 percent from 1970 to 1996. Adjusted for inflathon, 1996 capital expenditures (expressed in constant 1987 dollars) were only 17 percent above the 1970 level. Expendiures for highway maintenance in 1996 increased 447 percent compared to 1970. After accounting for inflation, 1996 maintenance expenditures were 35 percent above the 1970 level.

Amotor Fuels	
Gasoline	18.4 cents per gallon
Gasohol	
Whate with 10\% Ethanol	13.0 cents per gallon
Hade with 10\% Methatol	12.4 cents per gailon
Dissel Fued	24.4 cents per gation
Louefed Petroleum Gases	13.6 cents per galion
Tres	0.40 pounds, no tax
	Over $40-70$ pounds, 15 cents per pound in excess of 40 Over $70-90$ pounds, $\$ 4.50$ plus 30 cents per pound in excess of 70
	Over 80 pounds, \$10.50 plus 50 cents per pound in excess of 90
Thek and Traier Sales	12 percent of retalers salus price for trucks over 33.000 pourds Gross vehole weigtt (GWW) and trailers ovet 26,000 pounds GVN
Heavy Vehicle Use	Amual Yax:
	Trucks $55,000-75,000$ pounds $6 W h, \$ 100$ plue $\$ 22$ for each 1,000 pounds (for traction thereof) in excess of 55,000 pounds Trucks byer 75,000 pounds GMM. $\$ 550$
' See tables FE-101A, FE-101B, and FE-21B in Highway Statistics 1995 for a more complete description of Federal highwa-user fees.	

[^1]Wighway Conshrwathon Pree Trends and the Concmaner Price hudex

दx Milions of Dolnaws

Strixed hioduans	198\%	84\%	30\%
Intersiate Construction ${ }^{3}$	1064	0	0
inferstate Maintenance	2775	2405	2761
Intersigte Substute (Highway)	231	0	0
Rourtbursement for non-Federahy aided interstate Segments	0	1051	1896
Wational Highway System	3344	2909	3345
Surace Transportation Program	3860	3375	3876
Covgestion mitikation and Ar Guality mprovement	975	850	975
Brige Replacement and Rehabitution	2549	2200	2536
Pl. 104.59 Restoraton Funds ${ }^{4}$	0	267	155
Metrepolitan Plaming	138	137	157
Donor State Bonus	495	429	493
90\% of Payment Adustments	0	138	1682
Apportionment Adyustrent	905	811	931
Minimum Allocation	1427	502	603
Highway Satay (FHWA and NHTSA)	182	152	157
Totn ${ }^{5}$	17,952	15,226	19,560

 Mabonal Recrembona Trats Tras Fund.

 of the NHS Desigmaion Act.

Using Data for Comparisons

Even when data are consistently collected and reported, users need to recognize that highway statistical information is not necessarily comparable across all States. For many of the data items reported in Highway Statistics, a user should not expect to find consistency among all States, due to many State-to-State differences. When making State level comparisons, it is inappropriate to use these statistics without recognizing those differences that impact comparability.

Use of reported State maintenance expenditures provides a clear example. Maintenance expenditures per mile can vary between States depending upon a number of factors including differences such as climate and geography, how each State defines maintenance versus capital expenditures, traffic intensity and percent trucks, degree of urbanization, types of pavement being maintained, and the level of system responsibility retained by the State versus that given to other levels of government. It would be inappropriate, therefore, when using data from Highway Statistics to compare per mile maintenance costs across all States to draw any conclusions without taking into account the differences that should be expected in these parameters based upon differing State conditions.

If choosing to compare State data, the user must be prepared to thoughtfully select a set of peer States that have similar characteristics in relationship to the specific comparison being made. Improperly selected peer States are likely to yield invalid data comparisons.

Differences that the user needs to consider in determining suitability of peer States for data comparison purposes include characteristics such as urban/rural similarities, population density, degree of urbanization, climate, geography, differing State laws and practices that influence data definitions, administrative control of the public road system, similarity of the basic State economies, traffic volume similarities, and the degree of State functional centralization.

Beginning in 1994, FHWA provided a two-page "Peer State" table in cach edition of Highway Statistics that lists some of these characteristics so that the data user might be made more aware of possible problems that may arise when comparing State-by-State data.

Tatalifies per 100 Milition VMT	Total Highway Injuries	Thinuries per 100 Milion VMT	State Motor Fuel Taxes And Other Related Receipts	Totar figh way Capital Outlay ? Thousames)	Tota Disbursenents for Hogways (Thousands?	Payncests Thto the Tederal HTY Chousands)	Spportion: ments from the HTF (ThousandSy
2.22	47,963	107.23	530,399	479,737	1,266,350	486,254	327,193
194	5851	7033	18,56	294.109	561284	51.14	212,76:
236	71,806	58.66	478,129	646,351	1,342,003	379,343	250,050
2.21	19477	14294	3400022	414.47	868,271	317.173	243,407
1.43	300,104	92.65	2,635,798	4,459,389	9,222,772	2,238,990	1,519,635
17	33,743	$95 \% 6$	439,77x	598126	1,462,425	280338	225,580
1.10	48.163	58.42	498,120	667,307	1,374,482	219.462	354.533
151	10.15	7379	93,345	257,892	476335	69,206	76.895
1.87	10,378	31.95	32,028	80,377	143,240	27,694	83,366
2.12	243,320	53.43	1,300,895	2,869,157	4,824.183	H,124,231	762912
1.77	145,057	61.45	412,268	1,326,859	2,338,758	854,673	519.944
184	10994	73.04	67,167	248,634	431381	56.736	115,844
1.99	14,252	90.94	179,514	231,107	447,690	120,424	128,954
1.53	14,022	67.16	1,34,506	1,964,005	3688748	806,523	694,109
1.49	80,408	82.35	664,718	806,978	1,515,372	574,293	385,561
173	30,825	87.20	371,546	697008	1,360, 382	258,833	212,63
1.89	31.342	82.77	296,996	703,252	1,475,775	253,423	210,441
187	5600%	76.02	400.698	829.538	1.480467	42.880	266713
2.05	44,760	85.11	529,232	661,265	1,617,204	386,638	241,237
\% 132	36812	7625	145803	176,773	5n,151	1186%	18x004
1.32	48,806	94.63	604,614	760,282	1,692,907	367,322	268.408
\bigcirc	487228	10578	591807	1,587592	2953.348	404958	600,902
1.67	139,695	64.58	752,129	1,198,982	2,372,198	767,765	478,604
$\bigcirc 130$	47363	9271	509770	14180725	2,363,74	312675	288,527
2.65	33,144	92.21	334,857	445,621	931,440	290,764	187,609
188	77803	78.61	391,526	847.848	1.705140	566,524	374,754
2.12	10,556	89.48	167,857	207.601	429,117	105,043	163.881
180.	30,696	5290	249759	451669	0802072	177024	137417
2.46	24,023	58.94	233,563	340,578	583,981	140,391	132,872
122	22934	4791	116902	156244	471586	489538	94,846:
1.31	130,308	47.84	463,664	1,337,588	2,804,103	606,735	494,016
224	31315	68,69	223,760	383.432	627,24	-190339	171,383.
1.32	287,074	41.33	1,325,956	3,286,133	7,984,826	956,360	1,101,551
\% 109	150,881	5232	11784, 149	1,23,979	2762,188	- . 688.976	451624
126	5,889	114.47	93,112	190,250	339,716	78,866	124,534
335.	220,105	4684	1341859	1,389881	-2920\%70	-834,049	605,926.
1.96	53,378	73.86	367,146	479,727	1,002,583	369.914	242,441
\% 1733	38554	78.64	664425	515.32	1098400	299,338	339.721.
1.52	136,952	70.57	1,314,011	1,553,646	4,102,080	911.597	830,664
97\%	12.175	58.48	128518	\% 297389	-3\%37365	60,314	106,469
2.34	57,387	69.28	384,942	424,608	803,907	387.354	242,584
2245	\%,8,900	9207	0101273	285478	4 44.645	78.351	130,56:
2.12	79,658	73.36	662,619	611.213	1,290,265	551,369	328,921
1202	350387	52.91	40 231456	2390360	¢ 61160875	$\bigcirc 376,156$	1,038,661
1.64	49,001	39.87	214,380	312.918	554,350	187,683	134.349
0.1138	3,568	178.75	077005	108,849	259195	, 57,68	80.238
1.23	82,363	86.57	693,348	1,191,026	2,980,355	623,925	397,176
9×14	83.731	58.97	668,487	1232,488	2403,953	- 430,273	465157.
195	27.590	64.13	261,612	466,062	922,754	176,743	211,482
$\bigcirc 148$	66069	79.89	$\bigcirc 675345$	\$005,40	2326,850	4841597	321,782.
1.94	6.605	111.43	53,461	193,668	344,604	102,031	125,248
1.69	3,733,804	66.48	27,617,596	44,228,009	92,582,912	22,033,866	17,653,510

Popvitatom, Drivers, Velucles, Tuel and Trave by Stotec ${ }^{1}$

Perscns per Begistered Moto Vehicte	ctalons of Fuel per Vehicte	Milles per Cailon	Annual Milles per vehisie	Vehciemies per Capita	vehictemiles per Licensed Diver
1.25	880	17.58	15,475	12.637	16,389
¢ 14%	633	1225	6\%744	\%,6779,	W, 9355\%
1.48	869	16.26	14,123	9.513	15,445
\%, 1.44	$\bigcirc 145$	18.29	19.045 ,	24, 11, 098.	¢ 14888,
1.26	612	18.02	11.027	8,722	13,731
	5.598	$\bigcirc 17.59$, 10.827\%	\%, +9,454,	- 13140%
1.26	576	18.71	10,785	8,593	12,604
4, M^{2},	687	18.81	12977	, 18576.\%	\%, 16, 884 ,
2.29	767	18.22	13,967	6.104	9,945
\%, \% ${ }^{\text {a }}$,	\%, 6698	, 1711	11.939,	\%, 9,02\%.	¢, ¢1,44,
1.17	858	16.53	$14,187$	$12,121$	$17,947$
\%) प161\%	-3, 326	¢ 12.41	1021\% ${ }^{4}$	+, 0.84.	\% 16048%
1.12	715	17.09	12,214	10.898	15,812
\%. 1348	\% 46854	1676	- 10971	W , 6 ¢ 65 \%	¢ 12712.
1.12	736	17.26	12,697	11,338	17.877
\% \% 109.	661%,	1417	4.9268,	\%) 0,426	W 13945
1.22	765	16.08	12,296	10,086	14,507
$\text { \% \% } 14$	8881	¢1793\%	\%, 6706	\% 10965.	\% 16.5%,
1.31	784	14.65	11,481	8,756	14.517
- 130.	\% 788	1697	19,72,	¢, 10.310\%	+, 14.522,
1.40	693	18.34	12,708	9,107	13,675
2, 430,\%	\%) , 598	1776	10,624	¢ 8.200	\% 11.41.
1.20	667	16.88	11.262	9,403	13.431
\%, 121.\%.	, , 111,	- 16.19	11.57\%	\% 9546	¢, 6.tat
1.24	830	16.87	14,008	11,252	17.976
W, 4.23 .4	4835	1683	14359.	¢ 19414	\% 16.16
0.90	629	15.42	9.707	10,742	16,464
	$\square 762$	\bigcirc	40,982.	\%, \%829,	, 14000:\%
1.46	920	14.04	12,92	8,831	12,677
\% 1105 \%	\%) Sv4	\% 17.22	¢079.6		, ${ }^{1200 \%}$.
1.37	718	14.90	10,707	$7,804$	$11,362$
Q ${ }^{1} 14$.	\% 739.4	\% 18.84	+ 13926%	\% 12354 ,	- 19,240.\%.
1.71	599	18.63	11,155	6,524	11,317
\% ${ }^{2}$, 1.27%	4\% 72.	10.45 ,	13,406\%	Q $107 \% 9$, 15214
0.95	764	14.11	9,927	10,475	15,006
\% 1.14	$\square 618$	$\bigcirc 17.99$	10,551.	$\square \quad 9227$	\%月, 13, 12% \%
1.07	756	16.92	12.794	11,944	16,457
$\bigcirc \quad, \quad 12 \%$	W\%.645\%	\% 16.48	W 10.634,		\% 14605\%
1.40	685	16.32	11,186	8,016	11,756
\% $)^{442}$,	\%, 405.	\%) 1692	W02314\%	, \%, 7,80 ,	\%) \% 60044 ,
1.33	871	16.35	14,247	10,749	15,442
\% 0.98 \%	¢2, 728	\% $1430 \times$	\%, 10, 銅	- 4 T649,	- 55.074%
1.10	712	16.99	12.697	10,985	15,355
\% 4142%	W2, 855 ,	\%) 1608	, 13740 \%	\%, 2602 ,	Q 14750
1.38	783	17.27	13.521	9.767	14,811
	, \% 796.	$\bigcirc 1592$	\% 12.674	\%. 10.833	\% 43604
1.20	727	17.59	12,787	10,681	15,196
4% \% 400	W, 661-..	$\triangle 1624$	10, 36	\%, 8026	\% \% 12641%
1.30	681	18.48	12,581	9,691	13,883
4, \%39.4	$\square 75 \%$,	$\bigcirc 1807$.	4 13.209 ,	$\square .60200 \%$	4, 4, 175 \%
0.86	981	13.35	13,095	15,289	21,452
1.29	711	16.92	12,028	9,357	13,825

Urtanized Areas with Fopulations Above 750,900

Grbanized Area	Location		Estimated Urbanized Population (1,006)	Federal-Aid Urbanized Land Area (Sq. Miles)	Persons per Square Mile	Total Highway Mileage
	Pime State	Other State(s)				
New York-Northeastern Ny	NY	NS	16,320	3,962	4,119	37,513
Los angeles	CA		12.22	2.226	5490	26.663
Chicago-Nowlwestem lN	T.	TN	7,961	2,731	2,915	23.642
falatylua	PA	Mt.	4,538	1,350	3,361	13,234
Son Panciscouokland	CA		3,890	1,152	3,376	9,295
Deroret	盛	- ${ }^{\text {a }}$	4, 68	1,304	2889	12.15
Washington ${ }^{3}$	DC	MD, VA	3,449	999	3,452	9.959
Dallas Fomh Worth	TX		3363	1712	1,964	17.839
Houston	TX		3,059	1,538	1,988	15,443
Cosion	MA.		2.878	1,139	256	9930.
San Dicgo	$C A$		2,561	727	3,522	5,939
Atama'	CA		+ 2444	1.757	1.93	12.117
Pbeenix	$A Z$		2,340	1,054	2.220	5,233
Mmbeduoth St Pat	UR	\%	-2,263	1,192	1.898	10,397
Falcimore ${ }^{3}$	MD		2,107	712	2,959	6.420
N6ma-Haleat	IL		2,058	566	3769	5,607:
St. Louis	MO	IL.	1,968	1.057	1.861	8.069
Seatio	WA	\%	1948	844	2.308	6,937
Tumpest Pelersburg-Clearwater	EL		1,862	1.294	1.438	7.406
Menves	CO	- ${ }^{\text {a }}$	1.770	720	2458	6,681
Pitesbutgh	PA		1.768	1,112	1,589	8.433
Clevelitad	OH		1.767	838	2,108	5.562 .
San Fose	CA		1,593	358	4,449	4,091
Col Laiderdele Hobywoot Pompato Bench	IT		1,485	489	3,036	420 C
Norolk-VA Beach-Newport News	VA		1,429	952	1,501	5,300
Portund Vancouver	OR	WA	1.355	469	2,889	5,545
Kansas Ciry	MO	KS	1.339	1.034	1,294	7,411
Buesics San Bernatina	CH		1325	513	2,582	4.738
Milwaukee	WI		1,250	512	2.441	4,966
Sacramento	CA	\%	1,217	382	3185	4,459
San Antorio	TX		1,193	485	2.459	5,139
Chenmat	On	W	164	630	1.842	5.217
Orlando ${ }^{1}$	FLI		1,084	667	1.625	3,578
Las Vegas	NV		\% 1,074	270	3,97\%	2,894
Buffalo-Niagata Falls	NY		1,073	564	1,902	3,946
Wew Orens	LA		+1070	270	3.962	3,288
Okiahoma Cly	OK.		1,627	713	1,444	4,657
Tedamapelis	L		$\times \quad 993$. 822	2,35	4,106
West Pam Beach-Boca RatonDelray Beach	Fl.		967	556	1.739	2.595
Nemphas	TN	AK, Ms	\%, 964	489	2,56	3,205
Providence-Pawtucket	Er	MA	900	516	1.744	4,324
Counbus	OH		896	476	1,886	3.400
Salt Lake City	U7		862	353	2,441	2,946
Tacksontile	\%		18819	- 727	1.126	3,649
Lousville	KH	IN	782	384.	2,036	3,362
Tusa	OV:		757	395	1916	2749

- Annual average daily trafic.
'Some urbanized area data are inconsistentiy reported; for example, the Pernsylvania portion of Wilmington, Des
Florida is reported with Orlando; and the lllinois portions of Aurora, Danvilie, Egin, Crystal Lake, Joliet and Rounc 2 FHWA estimales used for District of Columbia portion of the Washirgoton urbanized area.
${ }^{3} 1995$ data used for the District of Columbia and Maryland portions of the Washington, D.C. urbanized at SOURCE: All data reporied by States throught the Highway Performance Monitoring System. Numbers may difer

Total recway prossway Milases	Tot2 5 6ecu4y Mies Per Urbazized Fopulation	Thtal Damy tighway Veaicte Mies $(1,000)$	Tota baily Freeway Vehictemites (1000)	Deny Vehice: Mues per Capita	Average AMBT* TR2l	Wol x favel served by Freewars	Averase AABT On THEchays
1,143	70.0	246,964	95,035	15.1	6,583	38.4	83,145
630	$\bigcirc 513$	264,945	17,798	21.6	9937	44.4	186080
475	59.7	152.256	46,943	191	6,440	30.8	98,827
345	760	73.690	21.383	162	5568	290	61,996
331	85.1	81,023	42,795	20.8	8,717	52.8	129.290
281	74.6	85,813	79, 26	230	6722	337	10443
308	89.3	79.506	32,687	23.0	7,983	41.1	106.126
561	168.6	100,272	41069	298	5,621	409	72,42
424	138.6	78,735	35,151	25.7	5,008	44.6	82,903
215	74.7	Sh,005	21375	2000	580\%	371	99448
240	93.7	55,622	28,983	21.7	9,366	52.1	120,762
29	1213	89.530	35086	36.5	7889	391	17.38
132	56.4	50,430	13,344	21.5	5.462	26.4	101,000
-4, 300	1352	51,946	22,932	22.	4996	44.	7494
270	128.1	42,214	19.772	200	6,575	46.8	73,229
1, 18	573	36.23	13,48	176	0,462	318	97.864
295	149.9	56,082	23,764	28.4	6,950	42.3	80,555
250	128	43,735	2208	24.5	684	46%	88392
121	65.9	38,720	7,843	20.7	5,228	20.2	64,818
n1e	136	37262	14882	20.1	5,57\%	399	74.039
283	160.1	35.557	10,309	20.1	4,216	28.9	36,427
224	2268	38349	16.019	217	8895	417	71.518
126	79.1	35,425	14,930	22.2	8,680	42.1	118,492
19	534	31,99	10.467	21.	746	334	96,302
167	116.9	32,004	10,664	22.3	5,938	33.3	63,856
136	1004	29305	1.60	21.6	5,285	396	85367
364	271.8	37,329	16,937	27.8	5,037	453	46,530
188	1042	29388	14986	221	6203	50.9	108,594
114	91.2	30,681	8,803	24.5	6,178	28.6	77,219
\% 105	86.3	26.333	10.55	21.8	6549	404	102488
211	176.9	29,581	13,279	24.7	5,756	44.8	62.993
16 c	1456	30976	13,87	26.6	5,937	447	88.076
149	137.5	26.777	7,694	24.7	7,484	28.7	51,637
\% 472	67.0	167%	5,504	156	5.798	32.8	76,44
139	129.5	19,729	5,647	18.3	5,000	28.6	40.625
प \rightarrow TG	$\square 11.0$	14,387	\$358	13,4	4,376	372	70,500
146	142.2	25,683	8,498	25.0	5515	330	58,205
+ , 130	- 1309	27.653	10,86	27.8	6,735	39.4	88.815
86	88.9	18,510	6,814	19.1	7,133	36.8	79,232
487	0902	20,440	5725	31%	6,534	273	69,64
117	130.0	17,705	7,331	19.6	4,095	41.4	62,658
- 149	$\bigcirc \bigcirc 189$	23,947	10,980	. 26.6	7043	458	73,691.
81	94.0	18.558	6,947	21.5	6,299	37.4	85,765
$\cdots 139$	¢ 1697	21.32	8.150	26.	\$808	348	S8,633
138	176.5	23,327	9,310	29.8	6.938	39.9	67,463
15	1493	16.729	4.631	220	6,085	336	49831

reported with Philadelphia; portons of Bristo, Connecticut are reported with Hartord or Waterbury; Kissirnmee, each are reported with Chicago. Other anomalles may exist.
for all Maryland urbanized areas.
bsequently pubished 1990 Census data.

The following Office of Highway Information Management printed publications may be obtained by contacting Federal Highway Administration, R\&T Report Center, FAX number (301) 577-1421, telephone number (301) 577-0818. If you have questions concerming the contents of any of these reports, please call (202) 366-0180. The reports with an 'x:s can be found on the Office of Highway Information website at http://www.fhwa.dot.gov/ohim

1. Highway Statistics Summary to 1995, FHWA-PL-97-009**
2. Highway Statistics 1996, (Annual), FHWA-PL-98-003**
3. Highway Taxes and Fees, How They Are Collected and Distributed, 1995 (Biemnial), FHWA PL-95-036
4. Traffic Monitoring Guide, February 1995, FHWA PL-95-031**
5. Nationwide Personal Transportation Survey Reports:

1990 NPTS:

5.1 Data Volume Books I FHWA PL-94-010A***
5.2 Data Volume Book II FHWA PL-94-010B**
5.3 Urban Travel Patterns FHWA PL-94-018
5.4 Travel Mode Special Reports FHWA PL-94-019
5.5 Demographic Special Reports FHWA PL-95-032
5.6 Special Report on Trip \& Vehicle Attributes FHWA PL-95-033
5.7 Summary of Travel Trends FHWA-PL-92-027
5.8 Travel Behavior Issues in the 90 's FHWA-PL-93-012

1995 NPTS:

5.9 Our Nation's Travel - 1995 NPTS Early Results Report FHWA-PL-97-028** 5.10 Transportation User's View of Quality FHWA-PL-98-013**

Nationwide Personal Transportation Survey Electronic Media: 1983-1990 NPTS CD-ROM (For copies: FAX (202) 366-3640) 1995 NPTS CD-ROM (FHWA-PL-97-034) (For copies: (301) 577-0818, or FAX (301) 577-1421)
1990 NPTS Website: http:/wwwacta,oml.gov/npis/1990/index.html 1995 NPTS Website: http://www-cta.ornl.gov/npts
6. Driver License Administration Requirements and Fees, 1996, FHWA PL-96-011**
7. Journey-to-Work Trends in the United States and its Major Metropolitan Areas 1960-1990, FHWA PL-94-012**
8. New Perspectives in Commuting, 1992, FHWA PL_ 92.026
9. A Customer's Guide to Using Highway Statistics, 1996, FHWA-PL-96-028

These repors may be obtained from the Office of Highway Infomation Management, Federal Highway Administration, FAX number (202) 366-7742, telephone number (202) 366-0180.

1. Monthly Motor Fuel Reported by States, (Monthly), FHWA PL-97-005**
2. Toll Facilities in the United States, 1995, FHWA-PL-95-034**
3. Traffic Volume Trends (Monthiy)**
4. The Highway Performance Monitoring System (Brochure), FHWA PL-94-031**
5. Bulletin-Highway Funding 1992-1995, FHWA**

G lossary of Acronyms

AADT	Average Annual Daily Traffic
AAMA	American Automobile Manufacturers Association
AV/SF	Average Volume/Service Flow
BTS	Bureau of Transportation Statistics
CAAA	Clean Air Act Amendments
CO	Carbon Monoxide
DOT	Department of Transportation
EPA	Environmental Protection Agency
FHWA	Federal Highway Administration
FY	Fiscal Year
GDP	Gross Domestic Product
HS95	Highway Statistics 1995
HTF	Highway Trust Fund
POV	Privately Owned Vehicle
IRI	International Roughness Index
IS	Interstate System
ISTEA	Intermodal Surface Transportation Efficiency Act of 1991
MF	Motor Fuel
MPG	Miles Per Gallon
NAAQS	National Ambient Air Quality Standard
NHS	National Highway System
NHTSA	National Highway Traffic Safety Administration
NPTS	Nationwide Personal Transportation Survey
O_{3}	Ozone
PM-10	Particulate Matter less than 10 Microns
PSI	Pollutant Standards Index
STRAHNET	Strategic Highway Network
US	United States
VMT	Vehicle-Miles of Travel

[^0]: * Ircludes Alaska and Puerto Rico, which account for much of the non-freeway and less than 4 -lane mileage.

[^1]: 40

